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Abstract. We derive a theoretical expression for the two-photon emission rate of two-electron systems, in
a form suitable for easy implementation in numerical calculations. Racah algebra techniques were used
to extended previous work on two-photon emission in hydrogen-like systems to more complex ones. The
obtained expression is, as far as we are aware, the first general expression that gives the spontaneous
two-photon decay rates of helium-like systems for any combination of multipoles.

PACS. 31.10.+z Theory of electronic structure, electronic transitions, and chemical binding –
31.30.Jv Relativistic and quantum electrodynamic effects in atoms and molecules – 32.70.Fw Absolute
and relative intensities

1 Introduction

Early interest in the decay of metastable states of hydro-
gen and helium stemmed from astrophysics. Under the
low-density conditions that prevail in planetary nebulae,
for example, the 1s2s 1S0 state of helium, will depopu-
late primarily by two-photon emission, while the 1s2s 3S1

state depopulates at approximately equal rates by colli-
sions and by radiation [1]. Consequently, the ratio of line
intensities in the helium triplet spectrum can be used as a
density probe for the nebula [2,3]. The spectra of helium-
like ions in the solar corona and solar flare provide similar
information [1] that can lead to the determination of elec-
tron densities and temperatures in thermal cosmic X-ray
sources [1,4].

Precision lifetime measurements can readily test the
theory of atomic structure by providing experimental re-
sults that are sensitive to both the wave functions and
energies of given configurations.

Although the basic non-relativistic theory of two-
photon emission has been available since the beginning
of the thirties with the work of Goppert-Mayer [5], labo-
ratory experimentation were not performed before 1965.
Lipeles, Novick and Tolk [6] by the application of atomic
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beam techniques pioneered the study of the 2s→ 1s tran-
sition in ionized helium. Their basic method was subse-
quently enhanced by Marrus and Schmieder [7] who stud-
ied a number of heavy hydrogenic and helium-like ions,
using the developed beam-foil technology.

Since that time, the increased availability of highly
charged heavy ions from accelerator facilities around the
world have enabled many experiments, among which
Marrus and Schmieder [7] (H-like and He-like argon),
Marrus et al. [8] (He-like Kr), Dunford et al. [9] (H-
like and He-like Ni), Dunford et al. [10] (He-like Br) and
Simionovici et al. [11] (He-like Nb).

Accurate knowledge of two-photon rates is also im-
portant for helium-like uranium. The 2s Lamb-shift was
studied by Munger and Gould [12] in a measurement of
the 1s2p 3P0 lifetime, which depends on the E1M1 rate
of de-excitation to the 1s2 1S0 ground state for around
15%. The uranium 1s2p 3P0 lifetime is also important for
proposed experiments to measure the nuclear magnetic
moments of Coulomb-excited nuclear states [13]. The life-
time of the 1s2p 3P0 and 1s2s 1S0 is also important for
proposed parity violation experiment in He-like U [14].
The knowledge of the E1M1 contribution to the 1s2p 3P0

lifetime in helium-like gold is also useful for an ongoing
experiment at GSI (Darmstadt) in which the hyperfine
quenching of this level is measured [15].
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This work is the continuation of a previous one [16], in
which we have studied the hydrogen-like systems, towards
the construction of a general, many-electron code in the
framework of the multiconfiguration Dirac-Fock method
(MCDF) [17–21] where use will be made of B-splines ba-
sis sets to compute high-precision values of two-photon
spontaneous emission rates in many-electron systems.

2 Two-photon transitions

The basic expression for the two-photon transitions differ-
ential emission rate is, in atomic units, [22]

dw
dω1

=
ω1ω2

(2π)3c2

∣∣∣∣∣∑
n

〈f| Ã∗2 |n〉 〈n| Ã∗1 |i〉
En −Ei + ω1

+
〈f| Ã∗1 |n〉 〈n| Ã∗2 |i〉
En −Ei + ω2

∣∣∣∣∣
2

dΩ1dΩ2 (1)

where i and f denote the initial and final states, ωj is
the frequency, and dΩj the element of solid angle for the
jth photon. The summation over n includes integrations
over the continua for both positive and negative energy
solutions of the Dirac equation. Conservation of the energy
requires

Ei −Ef = ω1 + ω2, (2)

which permits only one of the two photon frequencies to
be independent.

For photon plane waves with propagation vector kj
and polarization vector êj (êj · kf=0), the operators Ã∗j
in (1) are given by

Ã∗j = α ·
(
êj +Gk̂j

)
e−ikj ·r −Ge−ikj ·r (3)

whereG is an arbitrary gauge parameter. From the general
requirement of gauge invariance, we would expect the final
results to be independent of G. Following the treatment
given in [23], the total emission rate, or decay rate, is given
by (in atomic units)

dW
dω1

=
ω1ω2

(2π)3c2

∑
L1,M1,λ1,L2,M2,λ2

∣∣∣BL2M2λ2
L1M1λ1

+BL1M1λ1
L2M2λ2

∣∣∣2 ,
(4)

where

BL2M2λ2
L1M1λ1

=
∑
n

〈
f
∣∣∣ãλ2
L2M2

(r)
∣∣∣ n〉〈n ∣∣∣ãλ1

L1M1

∣∣∣ i〉
En −Ei + ω1

· (5)

To obtain equation (5) the partial-wave expansion of the
operator Ãj was used,

Ãj =
∑
λ,L,M

[
ej ·Yλ

LM (kj)
]
ãλLM(r), (6)

where ej is an arbitrary polarization vector, Yλ
LM are the

vector spherical harmonics and λ stands for the electric
terms (λ = 1), magnetic terms (λ = 0) and the longitudi-
nal terms (λ = −1).

One of the major task in the calculation of the two-
photon emission rates is the derivation of the angular ma-
trix elements in equation (5). In [23] a complete expression
for hydrogenic systems was presented, that could be easily
used in numerical calculations. In this work we present a
derivation of a similar expression for two-electron systems
that can be easily used for computing purposes.

This expression will be useful for calculations with two-
electron wave functions in the context of Relativistic Con-
figuration Interaction (RCI) or Multiconfiguration Dirac-
Fock (MCDF) methods in the frozen core approximation
in which the same orthogonal spectator orbitals are used
to build both initial and final states.

3 Matrix elements for 2-electron systems

Let us consider an irreducible tensor operator of order K,
X(K), whose components are defined by

X
(K)
Q ≡

{
T(k1)U(k2)

}(K)

Q

=
∑
q1,q2

T (k1)
q1 U (k2)

q2 〈k1q1k2q2|k1k2KQ〉 (7)

where T
(k1)
q1 and U

(k2)
q2 are the components of two ten-

sors operators T(k1) and U(k2). We assume that T(k1) and
U(k2) operate on parts 1 and 2 of a system, respectively.
We are interested in the matrix element〈

γj1j2JMJ

∣∣∣X(K)
Q

∣∣∣ γ′j′1j′2J ′M ′J〉 (8)

where the subscripts 1 and 2 label the angular-momentum
quantum numbers of the two parts of the system. Capital
letters, like J and MJ , refer to the system total angular
momentum quantum numbers. Making use of the Wigner-
Eckart theorem, we get〈
γj1j2JMJ

∣∣∣X(K)
Q

∣∣∣ γ′j′1j′2J ′M ′J〉 =

(−1)J−Mj

(
J K J ′

−MJ Q M ′J

)〈
γj1j2J

∣∣∣∣∣∣X(K)
∣∣∣∣∣∣ γj′1j′2J ′〉 .

(9)

Considering that we want to allow T(k1) to act on part 1
and U(k2) on part 2, we get [24]〈
γj1j2J

∣∣∣∣X(K)
∣∣∣∣γj′1j′2J ′〉=

〈
γj1j2J

∣∣∣∣T (k1)U (k2)
∣∣∣∣γ′j′1j′2J ′〉

=
∑
γ′′

[J,K, J ′]
1
2


j1 j

′
1 k1

j2 j
′
2 k2

J J ′ K


×
〈
γj1

∣∣∣∣∣∣T (k1)
∣∣∣∣∣∣ γ′′j′1〉〈γ′′j2 ∣∣∣∣∣∣U (k2)

∣∣∣∣∣∣ γ′j′2〉 . (10)
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D
f
���ãλ2
L2M2

���nEDn ���ãλ1
L1M1

��� iE = (−1)Jf+Ji+j1f +j1n+2j2−Mf−Mn+L1+L2 [Jf , Ji]
1/2 [Jn]

×
(
Jf L2 Jn

j1n j2f j1f

) 
Jf L2 Jn

−Mf M2 Mn

!(
Jn L1 Ji

j1i j2n j1n

) 
Jn L1 Ji

−Mn M1 Mi

!

×
D
γfj1f

������ãλ2
L2M2

������ γnj1nEDγnj1n ������ãλ1
L1M1

������ γij1i

E
δ(γ2f , γ2n)δ(γ2n , γ2i)δ(j2f , j2n )δ(j2n , j2i ) (15)

BL2M2λ2
L1M1λ1

=
X

j1n j2i ,JnMn

(−1)Jf+Ji−Mf−Mn+j1f +j1n+2j2+L1+L2 [Jf , Ji]
1/2 [Jn]

×
(
Jf L2 Jn

j1n j2 j1f

) 
Jf L2 Jn

−Mf M2 Mn

!(
Jn L1 Ji

j1i j2 j1n

) 
Jn L1 Ji

−Mn M1 Mi

! D
γfj1f

������ãλ2
L2M2

������ γnj1nEDγnj1n ������ãλ1
L1M1

������ γij1i

E
En − Ei + ω1

(16)

Setting

k1 = L, k2 = 0 (11)

we get〈
γj1j2J

∣∣∣∣∣∣T (L)
∣∣∣∣∣∣ γj′1j′2J ′〉 =

δ(j2, j′2) (−1)j1+j2+J′+L [J, J ′]1/2
{
J L J ′

j′1 j2 j1

}
×
〈
γj1

∣∣∣∣∣∣T (L)
∣∣∣∣∣∣ γ′j′1〉 (12)

for an operator T(L) acting only on part 1.
Thus, letting

X
(K)
Q =

{
T(L)1(0)

}(L)

M
= T

(L)
M , (13)

where 1(0) is a unitary tensor operator of order 0, and
considering equations (9, 12), we finally obtain〈
γj1j2JMJ

∣∣∣T (L)
M

∣∣∣ γ′j′1j′2J ′M ′J〉 =

(−1)J−Mj δ(j2, j′2) (−1)j1+j2+J′+L [J, J ′]1/2

×
(

J L J ′

−MJ L M
′
J

){
J L J ′

j′1 j2 j1

}〈
γj1

∣∣∣∣∣∣T (L)
∣∣∣∣∣∣ γ′j′1〉 . (14)

4 Two-photon transitions in helium-like
systems

For He-like systems, i.e., for systems with only two elec-
trons, the matrix elements in equation (5) are

see equation (15) above

where we made use of the expression (14), since the ãλLM
operators are irreducible tensor operators of order L as
the T(L) operators. jαβ (with α = 1, 2 and β = i, f, n)
identifies the angular momentum of an individual electron.

We now have

see equation (16) above.

Now〈
α
∣∣∣∣∣∣ã(λ)

LM

∣∣∣∣∣∣β〉 = (−i)L+λ−1(−1)jα−1/2

(
4π

2L+ 1

)1/2

× [jα, jβ ]1/2
 jα L jβ

1
2

0 −1
2

M
(λ,L)

αβ (17)

where Mfi involves only radial integrals [25]. The nota-
tion [j, k, ...] means (2j + 1)(2k + 1)... For magnetic type
multipoles

M
m

fi = M
(0,L)

fi =
2L+ 1

[L(L+ 1)]1/2
(κf + κi) I+

L (18)

whereas for electric type multipoles the value depends lin-
early on the gauge parameter

M
e

fi (G) = M
(1,L)

fi +GM
(−1,L)

fi , (19)

where

M
(1,L)

fi =
(

L

L+ 1

)1/2 [
(κf − κi)I+

L+1 + (L+ 1)I−L+1

]
−
(
L+ 1
L

)1/2 [
(κf − κi)I+

L−1 − LI−L−1

]
(20)

M
(−1,L)

fi = (2L+ 1)JL
+ (κf − κi)

(
I+
L+1 + I+

L−1

)
− LI−L−1 + (L+ 1)I−L+1. (21)

In the notation used by Rosner and Bhalla [26], the I±L (ω)
and JL(ω) integrals are defined as follows:

I±L (ω) =
∫ ∞

0

(PfQi ±QfPi) jL
(ωr
c

)
dr, (22)
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BL2M2λ2
L1M1λ1

= (−i)L2+λ2+L1+λ1−2(−1)Jf+Ji+2j2+L1+L2

×
X

j1n j2i ,Jn

2
4X

1n

4π
[j1n]1/2 [j1f , j1n , j1i ]

1/2 [Jf , Jn, Ji]
1/2

[L2, L1]1/2
M

(λ,L2)
1fγ1n

M
(λ,L1)
γ1n1i

Eγ1n
−Ei + ω1

(
Jf L2 Jn

j1n j2 j1f

)(
Jn L1 Ji

j1i j2 j1n

)

×
 
j1f L2 j1n

1/2 0 −1/2

! 
j1n L1 j1i

1/2 0 −1/2

!#
[Jn]1/2

X
Mn

(−1)Mn+Mf+1

 
Jf L2 Jn

−Mf M2 Mn

! 
Jn L1 Ji

−Mn M1 Mi

!
(24)

dW

dω1
=

ω1ω2

(2π)3c2 [Ji]

X
L1,M1,λ1,L2,M2,λ2

���BL2M2λ2
L1M1λ1

+BL1M1λ1
L2M2λ2

���2

=
ω1ω2

(2π)3c2 [Ji]

X
L1,M1,λ1,L2,M2,λ2,Mf ,Mi

8<
:

X
j1n j2i ,Jn

h
SJnj1n (2, 1)ΘJn(2, 1) + SJnj1n (1, 2)ΘJn (1, 1)

i9=
;

2

(29)

dW

dω1
=

ω1ω2

(2π)3c2 [Ji]

X
L1,λ1,L2,λ2

X
j1n j2i ,Jn

�h
SJnj1n (2, 1)

i2
+
h
SJnj1n (1, 2)

i2

+2
X

j′1n j2i ,J
′
n

"�
Jn, J

′
n

�1/2
(−1)2J′n+L1+L2

(
Jf J

′
n L1

Ji Jn L2

)
SJnj1n (2, 1)SJ

′
nj
′
1n (1, 2)

#9=
; . (32)

and

JL(ω) =
∫ ∞

0

(PfPi +QfQi) jL
(ωr
c

)
dr, (23)

where P and Q are the large and small components of
the radial Dirac wave function, respectively. The photon
frequency (Ei−Ef) is denoted by ω; ji, κi, and Ei are, re-
spectively, the total angular momentum, relativistic num-
ber, and energy of the initial state. The corresponding
quantities for the final state are jf , κf , and Ef .

Replacing (17) in (16), and using the fact that 2(j1f +
j1n) is even, it follows

see equation (24) above.

Defining

SJnj1n (2, 1) =∑
nj

M
(λ2,L2)

f,nj (ω2)M
(λ1,L1)

i,ni
(ω1)

Enj −Ei + ω1
∆Jnj1n (2, 1), (25)

where

∆Jnj1n (2, 1) =

4π [j1f , j1n , j1i ]
1/2

[L2, L1]1/2

(
j1f L2 j1n
1/2 0 −1/2

)(
j1n L1 j1i

1/2 0 −1/2

)

×
[

[j1n]1/2 [Jf , Jn, Ji]
1/2

{
Jf L2 Jn

j1n j2 j1f

}{
Jn L1 Ji

j1i j2 j1n

}]
(26)

and

ΘJn(2, 1) = [Jn]1/2
∑
Mn

(−1)Mn+Mf+1

×
(

Jf L2 Jn
−Mf M2 Mn

)(
Jn L1 Ji

−Mn M1 Mi

)
, (27)

we obtain

BL2M2λ2
L1M1λ1

= (−i)L2+λ2+L1+λ1−2(−1)Jf+Ji+2j2+L1+L2−1

×
∑

j1n j2i ,Jn

SJnj1n (2, 1)ΘJn(2, 1). (28)

Making use of (28), the decay rate, summed over Mf and
averaged over Mi, is given by

see equation (29) above.

Using the sum rules∑
M1,M2,Mf ,Mi

ΘJ (2, 1)ΘJ
′
(2, 1) = δ(J, J ′) (30)

and ∑
M1,M2,Mf ,Mi

ΘJ (2, 1)ΘJ
′
(1, 2) =

[J, J ′]1/2 (−1)2J′+L1+L2

{
Jf J

′ L1

Ji J L2

}
(31)

we arrive at the final expression for the decay rate in
helium-like systems

see equation (32) above.
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5 Conclusions

Expression (32) corresponds to the one obtained by
Goldman and Drake [23] for hydrogenic systems. The main
differences between these expressions lie in the definition
of the radial integral SJnj1n (25), namely the angular co-
efficients ∆Jnj1n (25) and ΘJn (26), and the existence of
two extra summations over j1n and j2i in the final expres-
sion. This expression is, as far as we are aware, the first
general expression that gives the spontaneous two-photon
decay rates of helium-like systems for any combination of
multipoles. This is a great advantage over the expressions
obtained by Drake [27] and by Derevianko and Johnson
[28], which apply only to two E1 photons transitions.

Furthermore, by a straightforward generalization of ex-
pression (14) a spontaneous two-photon decay rates gen-
eral expression for a N -electron system could be achieved.
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